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Abstract We show that including both the system and the apparatus in the quantum de-
scription of the measurement process, and using the concept of conditional probabilities,
it is possible to deduce the statistical operator of the system after a measurement with a
given result, which gives the probability distribution for all possible consecutive measure-
ments on the system. This statistical operator, representing the state of the system after the
first measurement, is in general not the same that would be obtained using the postulate of
collapse.

Keywords Quantum measurements · Projection postulate · Conditional probabilities ·
Consecutive measurements

1 Introduction

As the measuring instruments are formed by the same kind of matter than everything else,
it seems natural to describe the measurement process by quantum theory [1, 2]. This was
not the approach of Bohr, who understood the measurement as a primitive notion, having a
purely classical description [3]. The first attempt to use quantum theory to investigate the
measurement process was due to von Neumann [4]. The quantum interaction establishes a
correlation between the macroscopic pointer variables of the apparatus and the microscopic
variables of the measured system. In general the final state of the composed system obtained
using the Schrödinger equation is a linear superposition of macroscopically distinguishable
values of the pointer variable. For those who interpret that this state represents an instrument
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having simultaneously different pointer positions, it is not clear how to relate this final com-
posed state with the definite pointer position that is perceived as a result of an actual single
measurement. This difficulty is generally named “the measurement problem”. The collapse
of the state vector, either postulated or obtained from the addition of non linear terms to
the Schrödinger equation, was an attempt to solve this problem. L. Ballentine [7] pointed
out the inconsistencies of the collapse postulate with the predictions of ordinary quantum
theory, and a recent paper by M. Schlosshawer [8] discuss how ordinary quantum mechan-
ics, with decoherence, can be successfully used to avoid the addition of non linear terms
to Schrödinger equation. Moreover, N.G. Van Kampen [5] and latter G. Sewell [6] stressed
the importance of the macroscopic character of the measurement instrument to deal with the
measurement problem.

We do not try in this paper to give a solution to the “measurement problem” modifying
the Schrödinger equation to produce some kind of collapse. On the contrary, we intend to
deduce the state in which the system is prepared after a measurement with a given result,
from the usual quantum formalism applied to the interaction system-apparatus.

A defined choice of the interpretation for the state vector is unavoidable to make con-
tact between the mathematics of quantum theory and the results of the experiments. In this
paper the states of the systems are considered as probability distributions, and the state vec-
tor is the mathematical tool to compute these probabilities with the Born rule [9–12]. The
probabilities, and therefore the state vectors, are properties of an ensemble of systems. By
the law of large numbers these probabilities are related to the frequencies of results for a
big assembly of identically prepared experiments [13]. Moreover, in this interpretation, the
defined values of individual measurements are assumed as primitive notions.

In Sect. 2 we deduce de collapse of the wave function for the case of ideal measurements.
In Sect. 3 we consider non ideal measurements and we show that the collapse postulate is
not verified. In Sect. 4 we deduce the defining properties of a generalized measurement
from considering the measurement as a quantum process. The macroscopic character of the
measurement instrument was considered in Sect. 5. In Appendix we give a short description
of the logic of the measurement instruments, which is used through the paper to describe
probabilities for consecutive measurements.

2 Ideal Measurements and Collapse

The ideal measurement of an observable Q is an interaction between the system S and the
instrument A, which is represented by the following unitary transformation in the Hilbert
space HS ⊗HA

|φ〉|a0〉 −→
∑

q

〈q|φ〉|q〉|aq〉,

where |q〉 is an eigenvector of the operator Q̂ with eigenvalue q , |a0〉 is the initial state of
the instrument A and |aq〉 is the state of the instrument correlated with the state |q〉 of the
system. The states of the instrument are eigenvectors of a pointer observable Â (Â|aq〉 =
aq |aq〉, Â : HA → HA). For simplicity we have not explicitly included in the description the
huge number of microscopic variables which together with the pointer define the state of the
measurement instrument. This case will be considered in Sect. 5.

The ideal measurement of another observable R requires a different instrument B , and it
is represented by a transformation in the corresponding space HS ⊗HB

|φ〉|b0〉 −→
∑

r

〈r|φ〉|r〉|br 〉,
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where |r〉 is an eigenvector of the operator R̂ with eigenvalue r , |b0〉 is the initial state of the
instrument B and |br〉 is the state of the instrument correlated with the state |r〉 of the system.
The states of the instrument are eigenvectors of a pointer observable B̂ (B̂|br〉 = br |br〉,
B̂ : HB → HB ).

The consecutive measurements of the observables Q and R are represented by consec-
utive transformations in the composed Hilbert space H of the system S and instruments A

and B (H = HS ⊗HA ⊗HB ),

|�initial〉 = |φ〉|a0〉|b0〉
−→

∑

q

〈q|φ〉 |q〉 |aq〉|b0〉 =
∑

r

∑

q

〈q|φ〉〈r |q〉|r〉 |aq〉|b0〉

−→
∑

r

∑

q

〈q|φ〉〈r |q〉|r〉 |aq〉|br〉 = |�f inal〉.
(1)

The propositions of a classical logic have the structure of an orthocomplemented and
distributive lattice [14]. A classical logic can be obtained for the propositions involving the
pointer positions of both measurement instruments. For these propositions the usual expres-
sions of the theory of probabilities are valid, particularly those corresponding to conditional
probabilities (see Appendix). The use of conditional probabilities to obtain the state of a
system prepared by a measurement was given by W.M. de Muynck (see Sect. 3.3.4 of refer-
ence [11]).

The probability of measuring the value r of the observable R with the second instru-
ment B , conditional on having obtained the value q of the observable Q with the first in-
strument A, is given by

Pr(br |aq) = Pr(br ∧ aq)

Pr(aq)
= 〈�f inal|(ÎS ⊗ |aq〉〈aq | ⊗ |br〉〈br |)|�f inal〉

〈�f inal|(ÎS ⊗ |aq〉〈aq | ⊗ ÎB)|�f inal〉
, (2)

where ÎS and ÎB are the identity operators in the Hilbert spaces HS and HB and we have used
the Born rule for computing the probabilities Pr(br ∧aq) and Pr(aq). Taking into account the
expression for the final state given by (1), it is straightforward to prove that the conditional
probability given by (2) can be written in the following simple way

Pr(br |aq) = 〈q|r〉〈r|q〉.
Moreover, if we consider the projector operator �̂r ≡ |r〉〈r| corresponding to the propo-

sition r = R, and if we define ρ̂q ≡ |q〉〈q|, the conditional probability can be given the
expression

Pr(br |aq) = Tr[ρ̂q�̂r ]. (3)

The first term refer to the probability of certain values of the pointer positions of the
instruments A and B , while the second term is written in terms of vectors and operators of
the Hilbert space HS of the system S.

If we perform a different sequence of measurements on the system, maintaining the first
instrument measuring the observable Q, but changing the second instrument for one suitable
to the ideal measurement of the observable R′, we will obtain

Pr(b′
r |aq) = Tr[ρ̂q�̂

′
r ], (4)

where �̂′
r ≡ |r ′〉〈r ′| is the projector corresponding to the proposition R′ = r ′.
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Equations (3) and (4) give the probabilities to obtain the result r for the measurement
of the observable R and the result r ′ for the observable R′, respectively. Therefore, the
presence of the corresponding projectors �̂r and �̂′

r in the second terms. Moreover, in both
cases, the probabilities are conditional to have previously obtained the result q from the
measurement of the observable Q. In other words, in both cases the measurements of R and
R′ are performed on an ensemble of systems S for which the result q of the observable Q

was previously obtained.
Equations (3) and (4) also show that this special ensemble of systems is represented by

the state operator ρ̂q ≡ |q〉〈q|. It is evident that this state operator is suitable to compute the
probabilities for the values of any observable of the system, for the ensemble of systems in
which a previous ideal measurement of the observable Q has given the value q .

The initial state of the system is represented by the vector |φ〉 ∈ HS , while after the
measurement it is represented by the vector |q〉 ∈ HS , the eigenvector of the operator Q̂ with
eigenvalue q . This result would also have been obtained by using the collapse postulate.

However we did not use the collapse postulate to obtain the result. It was obtained using
(i) Schrödinger equation for the unitary evolution given in (1) of the state vector corre-
sponding to the closed system formed by the system S and the instruments A and B , and
(ii) conditional probability defined by (2) as a quotient of probabilities obtained from the
Born rule.

The transformation |φ〉 → |q〉 of the state of the system S due to the measurement has
some remarkable properties which make it very different from the transformations generated
by the Schrödinger equation:

(i) it is not a unitary transformation (different states |φ〉 and |φ′〉 may evolve into the same
state |q〉);

(ii) the transformation |φ〉 → |q〉 do not represent the evolution of a single ensemble of
systems (|q〉 represents the state of a subensemble of the ensemble unitarily evolved
from the state |φ〉).

For the case of an ideal measurement, this transformation coincides with the one pro-
vided by the collapse postulate, but we have avoided to use this postulate. In our approach
the measurement is analyzed as a process fully described by quantum theory. The non-
unitary transformation |φ〉 → |q〉 was deduced from the unitary evolution generated by the
Schrödinger equation describing the interaction system-apparatus.

The case of an ideal measurement of an observable with degenerate spectrum can also be
obtained in this approach. Let us consider an observable represented by the operator

Q̂ =
∑

q

q �̂q, �̂q =
nq∑

j=1

|q, j〉〈q, j |, 〈q, j |q ′, j ′〉 = δqq ′δjj ′ ,

where nq is the dimension of the subspace of HS corresponding to the eigenvectors of Q̂

with eigenvalue q . Any vector |φ〉 ∈ HS can be written in terms of the projectors �̂q

|φ〉 =
∑

q

nq∑

j=1

cqj |q, j〉 =
∑

q

�̂q |φ〉,

where cqj ≡ 〈q, j |φ〉.
An ideal measurement of this observable by an instrument A is represented by the fol-

lowing unitary transformation in HS ⊗HA

|q, j〉|a0〉 −→ |q, j 〉|aq〉.



2386 Int J Theor Phys (2008) 47: 2382–2392

After the interaction with instrument A, the system S interacts with another instrument B ,
making an ideal measurement of an observable represented by the operator R̂ = ∑

r r|r〉〈r|,
having non degenerate spectrum. The second measurement is represented by the transfor-
mation |r〉|b0〉 → |r〉|br〉.

The consecutive measurements are represented by an unitary transformation in H = HS ⊗
HA ⊗HB

|�initial〉 = |φ〉|a0〉|b0〉 −→
∑

q

�̂q |φ〉|aq〉|b0〉

−→
∑

q

∑

r

|r〉〈r|�̂q |φ〉|aq〉|br〉.

For the probability to obtain br in the second measurement if the result of the first one
was aq we obtain in this case

Pr(br |aq) = Pr(br ∧ aq)

Pr(aq)
= Tr[ρ̂q�̂r ],

where �̂r = |r〉〈r| and

ρ̂q = �̂q |φ〉〈φ|�̂q

〈φ|�̂q |φ〉 ,

which is the Lüders projection.

3 Non Ideal Measurements

In this case the system is modified by the measurement process, even when the initial state
of the system is an eigenstate of the observable to be measured.

The measurement processes on the eigenvectors |q〉 and |r〉 of the operators Q̂ and R̂ are
described by the following unitary transformations

|q〉|a0〉 → |μq〉|aq〉, |r〉|b0〉 → |νr〉|br〉,
where |μq〉 and |νr〉 are different from the initial states |q〉 and |r〉.

Consecutive measurements are represented by the transformation

|�initial〉 = |φ〉|a0〉|b0〉
−→

∑

q

〈q|φ〉 |μq〉 |aq〉|b0〉 =
∑

r

∑

q

〈q|φ〉〈r |μq〉|r〉 |aq〉|b0〉

−→
∑

r

∑

q

〈q|φ〉〈r |μq〉|νr〉 |aq〉|br〉 = |�f inal〉,

and the probability that the second instrument measures the value r of R if the first instru-
ment has measured the value q of Q is given by the conditional probability

Pr(br |aq) = Pr(br ∧ aq)

Pr(aq)
= 〈�f inal|(ÎS ⊗ |aq〉〈aq | ⊗ |br〉〈br |)|�f inal〉

〈�f inal|(ÎS ⊗ |aq〉〈aq | ⊗ ÎB)|�f inal〉

= |〈q|φ〉|2|〈r |μq〉|2∑
r |〈q|φ〉|2|〈r |μq〉|2 = |〈r |μq〉|2 = Tr[ρ̂ ′

q �̂r ],

where �̂r = |r〉〈r| corresponds to the proposition r = R, and we define ρ̂ ′
q ≡ |μq〉〈μq |.
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In this case we have shown that the first measurement with result q has prepared the
system in the state ρ̂ ′

q . The effect of the first measurement on the system is in this case the
transformation |φ〉 → |μq〉, which do not coincide with the collapse postulate. This result
was previously obtained by L.E. Ballentine [7], who analyzed the limitations of the collapse
postulate.

4 Generalized Measurements

Now we consider the most general measurement process [15]. It is described through a
collection of measurement operators {M̂m}, acting on the Hilbert space HS of the system,
and satisfying

∑
m M̂†

mM̂m = ÎS . The probability to obtain the result m in the measurement
on a state |φ〉 is Pr(m) = 〈φ|M̂†

mM̂m|φ〉, and if the result is m the transformation on the
system is

|φ〉 −→
(√

〈φ|M̂†
mM̂m|φ〉

)−1

M̂m|φ〉. (5)

In this section we are going to prove that these defining properties of a generalized mea-
surement can be deduced considering the interaction between the system S and a mea-
surement instrument A, represented by a unitary transformation Û in the Hilbert space
H = HS ⊗ HA. If we denote by |m〉 the state of the instrument corresponding to the re-
sult m, the measurement operators can be deduced from the following expression

|�initial〉 = |φ〉|0〉 −→ |�f inal〉 = Û (|φ〉|0〉)
=

∑

m

|m〉〈m|Û (|φ〉|0〉) ≡
∑

m

(M̂m|φ〉)|m〉.

The probability to obtain the result m can be deduced from the Born rule

Pr(m) = 〈�f inal|(ÎS ⊗ |m〉〈m|)|�f inal〉 = 〈φ|M̂†
mM̂m|φ〉.

If two instruments A and B , with measurement operators {M̂mA
} and {N̂mB

}, are used for
consecutive measurements on a system S, the process is represented by the following two
consecutive unitary transformations

|�initial〉 = |φ〉|0A〉|0B〉 −→
∑

mA

(M̂mA
|φ〉)|mA〉|0B〉

−→
∑

mA

∑

mB

(N̂mB
M̂mA

|φ〉)|mA〉|mB〉 = |�f inal〉.

The probability for the instrument B to give the result mB conditioned for the fact that
the instrument A has already given the result mA is now obtained from the expression of
conditional probability and the Born rule

Pr(mB |mA) = Pr(mB ∧ mA)

Pr(mA)

= 〈�f inal|(ÎS ⊗ |mA〉〈mA| ⊗ |mB〉〈mB |)|�f inal〉
〈�f inal|(ÎS ⊗ |mA〉〈mA| ⊗ ÎB)|�f inal〉
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= 〈φmA
|N̂†

mB
N̂mB

|φmA
〉,

|φmA
〉 ≡

(√
〈φ|M̂†

mA
M̂mA

|φ〉
)−1

M̂mA
|φ〉.

The state |φmA
〉 can be interpreted as the result of a preparation on the system produced

when the instrument A registers the value mA. The postulated generalized collapse defined
in (5) is now deduced from Schrödinger equation and Born rule, by considering the mea-
surement instruments as quantum systems. In this section we have shown, once again, that
all the properties defining a general measurement can be deduced considering the measure-
ment as a quantum process of interaction between system and instruments, and that there is
no need of collapse postulate.

5 Macroscopic Instruments

In the previous sections we have not included the huge number of microscopic variables of
the macroscopic measurement instrument. Including these variables, an operator Â repre-
senting the pointer of an instrument M1 has a complete set of eigenvectors in the Hilbert
space HM1 , satisfying Â|a,m〉 = a|a,m〉, where a is the pointer variable, and m labels the
many other quantum numbers necessary to specify an eigenvector. For the system S, we con-
sider the measurement of an observable represented by an operator Q̂ in the Hilbert space
HS , having a complete set of eigenvectors verifying Q̂|q〉 = q|q〉.

The non ideal measurement process is represented by an unitary transformation in the
Hilbert space HS ⊗HM1 , defined by

|q〉|a0,m〉 −→ |aq; (q,m)〉 ≡
∑

q ′m′
uq ′m′

qm |q ′〉|aq,m
′〉.

Following L.E. Ballentine [7], the labels (r,m) in the final vector do not denote eigen-
values, but they keep the memory of the initial state previous to the measurement. The
system-instrument state after the measurement is |aq; (q,m)〉, having a well defined value
aq of the pointer variable, but in general not well defined values of the remaining variables.
The initial value q of the system observable Q is correlated with the final value aq of the
pointer observable A.

Analogously, the measurement of another observable represented by the operator R̂ in the
Hilbert space HS of the system S, is made with an instrument M2 with pointer operator B̂ in
the Hilbert space HM2 . The measurement process is represented by an unitary transformation
in the Hilbert space HS ⊗HM2

|r〉|b0, n〉 −→ |br; (r, n)〉 ≡
∑

r ′n′
vr ′n′

rn |r ′〉|br , n
′〉,

where |r〉 is an eigenvector of R̂ in HS (R̂|r〉 = r|r〉) and |b,n〉 is an eigenvector of the
pointer observable B̂ in the Hilbert space HB (B̂|b,n〉 = b|b,n〉). The index n represents
the quantum numbers different from the label b associated to the pointer.

For an initial state |φ〉 = ∑
q cq |q〉 of the system S (cq ≡ 〈q|φ〉), the consecutive mea-

surement of observables Q̂ and R̂ is represented by the following consecutive transformation
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in the Hilbert space HS ⊗HM1 ⊗HM2

|�initial〉 = |φ〉|a0;m〉|b0;n〉 −→
∑

q

cq |aq; (q,m)〉|b0, n〉

−→ |�f inal〉 ≡
∑

q

cq

∑

r

(r|aq; (q,m))|br ; (r, n)〉,

where (r|aq; (q,m)) ≡ ∑
q ′m′ u

q ′m′
qm 〈r|q ′〉|aq,m

′〉 ∈ HM1 .
By straightforward calculations we obtain

Pr(br |aq) = Pr(br ∧ aq)

Pr(aq)

= 〈�f inal|[ÎS ⊗ ∑
m′ |aq,m

′〉〈aq,m
′| ⊗ ∑

n′ |br, n
′〉〈br, n

′|]|�f inal〉
〈�f inal|[ÎS ⊗ ∑

m′ |aq,m′〉〈aq,m′| ⊗ ÎM2 ]|�f inal〉
= Tr[ρ̂(q,m)�̂r ],

where �̂r ≡ |r〉〈r| and

ρ̂(q,m) ≡
∑

q ′q ′′

(
∑

m̃

uq ′m̃
qm uq ′′m̃

qm

)
|q ′〉〈q ′′|.

The density operator ρ̂(q,m) represents the state of the system S after the measurement
with the instrument M1 has given the result aq . We notice in this case an important difference
with the results obtained in the previous sections: even for a system S in an initially pure
state, the effect of the instrument microscopic variables is to prepare the system in a non
pure state.

6 Conclusions

The collapse of the wave function is usually invoqued to justify the existence of a well
defined result of a single measurement process.

Our strategy in this paper has been the opposite. First, we gave a full quantum description
of the system- instrument interaction for the measurement process. Second, we accepted
the experimental evidence that in each individual experiment, the measurement instrument
produce a well defined results. Third, we obtained the probabilities for these results using
the Born rule.

For two consecutive measurements on the system, the probability distribution of the pos-
sible results of the second measurement conditioned to a determined result of the first one,
can be computed with the usual expression for conditional probabilities. From this calcula-
tions we have been able to deduce which is the state vector representing the system after a
measurement with a given result.

The system is prepared in a well defined state by the measurement. This state is strongly
dependent on the form of the interaction system-apparatus. The obtained result coincides
with that of the collapse postulate only for the ideal measurement, and explicit expres-
sions of the prepared state for non ideal and generalized measurements have also been ob-
tained.
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In this way we have been able to provide a satisfactory description of the measurement
process as a quantum process, in which it is not necessary to postulate additional physical
mechanisms like the collapse of the wave function.

Appendix: The Logic of the Measurement Instruments

Several times in this paper we have considered the measurement of an observables Q with
an instrument A on a system S, followed by the measurement of another observable R using
a second instrument B . The whole process was described by the evolution of a state vector
in the Hilbert space H = HS ⊗HA ⊗HB . We labelled by Â and B̂ the corresponding pointer
operators having eigenvalues aq and bp , and eigenvectors |aq〉 and |bp〉.

The quantum description of the measurement process should prescribe definite values
for the probabilities of propositions like “the result on the first instrument was aq and the
result on the second instrument is bp”, or “the result on the second instrument is bp if the
result on the first instrument was aq”. These propositions involve eigenvalues of the pointer
operators Â and B̂ , acting on Hilbert spaces HA and HB . These operators can be lifted to
operators acting on the tensor product space H,

ÂH ≡ ÎS ⊗ Â ⊗ ÎB , B̂H ≡ ÎS ⊗ ÎA ⊗ B̂,

where ÎS , ÎA and ÎB are the identity operators in the spaces HS , HA and HB . It is evident
that the lifted operators ÂH and B̂H commute, and therefore the possible results of the
consecutive measurements have the quantum logic of the simultaneous eigenvectors of a set
of commuting operators. The relevant aspect of this logic are reviewed in what follows.

Let us consider a complete set of commuting observables, represented by n opera-

tors R̂ ≡ (R̂1, . . . , R̂n), having the complete orthonormal eigenvectors |r〉 = |r1, . . . , rn〉
(R̂ |r〉 = r |r〉, r ∈ R

n). The proposition “r belongs to the set �n ⊂ R
n” is represented by

the subspace of the Hilbert space generated by the projector �̂�n = ∑
r∈�n |r〉〈r|. The con-

junction and disjunction of two proposition are represented by the intersection and the direct
sum of the subspaces. The order relation is the implication, represented by set inclusion. For
two propositions p1 = {r ∈ �n

1} and p2 = {r ∈ �n
2} we have the following corresponding

projectors [16],

p1 −→ �̂1 = ∑
r∈�n

1
|r〉〈r|,

p2 −→ �̂2 = ∑
r∈�n

2
|r〉〈r|,

p1 ∧ p2 −→ limk→∞(�̂1�̂2)
k,

p1 ∨ p2 −→ Î − limk→∞[(Î − �̂1)(Î − �̂2)]k,
p′

1 −→ Î − �̂1.

(6)

The projectors associated with propositions within the basis {|r〉} are commutative

�̂1�̂2 =
∑

r∈�n
1

|r〉〈r|
∑

r ′∈�2

|r ′〉〈r ′| =
∑

r∈�n
1	�n

2

|r〉〈r| = �̂2�̂1.

From these commutation properties simplified expressions are easily obtained for the
projectors associated with conjunction and disjunction

p1 ∧ p2 −→ �̂1�̂2,

p1 ∨ p2 −→ �̂1 + �̂2 − �̂1�̂2.
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Propositions of the form p1 = {r ∈ �n
1}, p2 = {r ∈ �n

2} and p3 = {r ∈ �n
3} are distribu-

tive, i.e.

p1 ∧ (p2 ∨ p3) = (p1 ∧ p2) ∨ (p1 ∧ p3),

p1 ∨ (p2 ∧ p3) = (p1 ∨ p2) ∧ (p1 ∨ p3),

as can be easily proved by writing the corresponding projectors. Therefore, within a fixed
basis, the lattice of propositions is a classical logic. Moreover, within a fixed basis the usual
logic of our language is suitable to talk about quantum propositions.

A probability distribution on a lattice is a function from the propositions to the real num-
bers satisfying

(i) Pr(p) ≥ 0, for all propositions p

(ii) Pr(p ∨ q) = Pr(p) + Pr(q) for all propositions p and q such that p ∧ q = φ

(iii) Pr(I ) = 1 for the unit proposition I.

Probabilities in quantum theory are calculated using the Born rule. For a pure state rep-
resented by the vector ψ of the Hilbert space, the probability of a proposition p is given by
Pr(p) = 〈ψ |�̂p|ψ〉, where �̂p is the projector associated with the proposition p. We can
prove that conditions (i) (ii) and (iii) are satisfied.

To prove condition (i) consider a proposition p�n = {r ∈ �n}, with the corresponding
projector �̂�n = ∑

r∈�n |r〉〈r| and compute Pr(p�n) = 〈ψ |�̂�n |ψ〉 = ∑
r∈�n〈ψ |r〉〈r|ψ〉 =∑

r∈�n |〈r|ψ〉|2 ≥ 0.
To prove (ii) let us consider two disjoint subsets �n

1 and �n
2 of R

n. Therefore �̂�n
1
�̂�n

2
=

0, and therefore p�n
1
∧ p�n

2
= φ. The projector corresponding to the proposition p�n

1
∨ p�n

2

is �̂�n
1
+ �̂�n

2
− �̂�n

1
�̂�n

2
= �̂�n

1
+ �̂�n

2
. The probability of the disjunction is

Pr(p�n
1
∨ p�n

2
) = 〈ψ |(�̂�n

1
+ �̂�n

2
)|ψ〉

= 〈ψ |�̂�n
1
|ψ〉 + 〈ψ |�̂�n

2
|ψ〉 = Pr(p�n

1
) + Pr(p�n

2
),

and condition (ii) is verified.
Property (iii) is easily obtained

Pr(pRn ) = 〈ψ |�̂Rn |ψ〉 =
∑

r∈Rn

〈ψ |r〉〈r|ψ〉 = 〈ψ |Î |ψ〉 = 1.

The probability for the proposition “the observable Rj has the value rj in the set �j if
the observable Ri has the value ri in the set �i” can be defined by the standard expression
for the conditional probability

Pr(p�j
|p�i

) ≡ Pr(p�j
∧ p�i

)

Pr(p�i
)

,

p�j
≡ {rj ∈ �j ⊂ R}, p�i

≡ {ri ∈ �i ⊂ R}, (7)

which is well defined if Pr(p�i
) �= 0. To be consistent, we must verify that the expression

just defined satisfies the probability conditions (i) (ii) and (iii).
It is obvious that Pr(p�j

|p�i
) ≥ 0, and therefore condition (i) is verified.

Let us consider that �j and �′
j are two disjoint subsets of R (�j ∩ �′

j = φ). There-
fore the propositions p�j

≡ {rj ∈ �j } and p�′
j
≡ {rj ∈ �′

j } satisfy p�j
∧ p�′

j
= φ. Let us
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consider

Pr(p�j
∨ p�′

j
|p�i

) ≡
Pr([p�j

∨ p�′
j
] ∧ p�i

)

Pr(p�i
)

=
Pr([p�j

∧ p�i
] ∨ [p�′

j
∧ p�i

])
Pr(p�i

)

=
Pr(p�j

∧ p�i
) + Pr(p�′

j
∧ p�i

)

Pr(p�i
)

,

where the last term follows from the fact that

[p�j
∧ p�i

] ∧ [p�′
j
∧ p�i

] = (p�j
∧ p�′

j
) ∧ p�i

= φ ∧ p�i
= φ.

Therefore Pr(p�j
∨ p�′

j
|p�i

) = Pr(p�j
|p�i

) + Pr(p�′
j
|p�i

), and we have verified con-
dition (ii).

Condition (iii) is easily verified, as it is self evident from the following equation

Pr(pR|p�i
) = Pr(pR ∧ p�i

)

Pr(p�i
)

= Pr(pR∩�i
)

Pr(p�i
)

= Pr(p�i
)

Pr(p�i
)

= 1.

We emphasize that the consistency of the definition of the conditional probability given
in (7) relies strongly on the fact that it is applied to propositions within a fixed basis of
the Hilbert space. This is precisely the case in this paper, where we deal with propositions
corresponding to the possible results of consecutive measurements.
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